基于稀疏语义表示的不良图像检测算法
Pornography Image Detection Based on Sparse Representation of Semantic Information
多媒体通信中泛滥的淫秽色情等不良图像对青少年的成长造成极大的危害,如何有效的检测与拦截不良图像成为亟待解决的问题。从图像语义分析的角度出发,提出一种高斯混合模型和Bootstrap提升算法相结合的肤色区域提取方法;利用视觉注意模型提取肤色区域中感兴趣的特征点,降低特征点的冗余性;进而引入"词袋"模型来描述图像;在"词袋"模型中"字典"的基础上,采用稀疏表示的方法过滤不良图像信息。实验结果证明所提出的不良图像检测算法的有效性和鲁棒性。此外,本文还对比分析了该算法在不同距离测度下的性能。
Pornography images are spread out in the multi-media communication, which is harmful to the mental health of teenagers. Thus, the pornography image detecting techniques are most urgent needed. From the perspective of image semantic analysis, we propose a Gaussian mixture model based skin region extraction method, which is boosted by the Bootstrap algorithm. To reduce the feature redundancy, feature points in the skin area are obtained by saliency-based visual attention model. Then "bag of words" model is incorporated to represent the images by the dictionary. Finally, the pornography information is filtered by a sparse representation algorithm based on the dictionary in the "bag of words" model. The experimental results prove the validity of the proposed method. In addition, the efficiency of the proposed method under different distance measures is compared.
李亮、李东阳、魏巍、高新波、田春娜
通信
模式识别高斯混合模型视觉注意力词袋距离测度稀疏表示
Pattern recognitionGaussian mixture modelSaliency-based visual attentionBag of wordsDistance measureSparse representation
李亮,李东阳,魏巍,高新波,田春娜.基于稀疏语义表示的不良图像检测算法[EB/OL].(2011-08-24)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201108-388.点此复制
评论