分布式平台下自适应的快速图像检索
daptive Fast Image Retrieval on Distributed Platform
移动拍摄终端的普及,图像数据的指数级增长,如何进行有效的图像检索依旧是个亟待解决的问题。针对传统单机图像检索速度慢、难以扩展等问题,本文对图像提取的特征构建索引,之后使用Hadoop平台进行并行式搜索,达到更高的检索效率。同时,面对海量图像特征数据,本文使用Hbase进行图像特征存储。由于深度图像特征可以更好呈现整幅图像的语义信息,本文采用基于CNN的深度图像特征进行图像检索任务。最后在Flickr1M和UKbench数据集上进行百万级别的图像检索任务,实验表明本文图像检索方法在图像检索任务中的效率和准确率都有提升。
With the popularity of mobile phones and other photographic devices, image data is growing rapidly. How to carry out effective image retrieval is still an urgent problem to be solved. Aiming at the problems of slow speed and low difficult expansion of traditional single-machine image retrieval, this paper proposes a parallel retrieval method based on Hadoop for image retrieval task. In addition, in order to avoid the difficulty of storing image features, this paper uses Hbase to store image features. Because the deep image features can better present the semantic information of the whole image, this paper uses deep image features based on CNN for image retrieval task.The experiments on Flickr1M and UKbench datasets show that the efficiency and accuracy ofimage retrieval task are improved based on our method .
艾丽华、程跃豪
计算技术、计算机技术
图像检索、Hadoop、Hbase、特征索引
Image retrievalHadoopHbaseFeature indexing
艾丽华,程跃豪.分布式平台下自适应的快速图像检索[EB/OL].(2019-05-22)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201905-234.点此复制
评论