|国家预印本平台
首页|考虑非线性弥散关系的缓坡方程在Berkhoff地形中的研究分析

考虑非线性弥散关系的缓坡方程在Berkhoff地形中的研究分析

Study of mild-slope equation with nonlinear dispersion on Berkhoff topography

中文摘要英文摘要

波浪由外海传播至近海时,由于受到地形、建筑物等影响,非线性增强,线性弥散关系不足以描述波浪的弱非线性效应。本文采用结合李瑞杰等的非线性弥散关系的缓坡方程,对Berkhoff椭圆地形进行波浪模拟,分析研究了线性和非线性弥散关系的数值模拟计算结果,并对两种结果进行了比较,采用非线性弥散关系的计算结果与实验值的误差较线性弥散关系的结果更小,表明非线性模型要优于线性模型,精度也更高,更适合近海海区的弱非线性波浪传播模拟。

s surface waves propagate from deep to shallow water, the nonlinearity will strengthen, due to the effect of topography and various hydraulic structures, which can’t be descript with the linear dispersion relations. In the paper, mild-slope equation with nonlinear dispersion which is taken as the governing equation simulates wave transformation on Berkhoff topography. The computational results between linear and nonlinear dispersion are present. The results of nonlinear dispersion agree with the measure data well than the linear dispersion, which illustrated that the nonlinear model is applied to the wave transformation with weak nonlinearity in offshore area.

舒勰俊、郑俊、江森汇

海洋学

缓坡方程非线性弥散关系波浪变形Berkhoff地形

Mild-slope EquationNonlinearityWave DispersionWave TransformationBerkhoff Experiment

舒勰俊,郑俊,江森汇.考虑非线性弥散关系的缓坡方程在Berkhoff地形中的研究分析[EB/OL].(2009-01-14)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200901-654.点此复制

评论