一种改进的作业车间调度转换瓶颈算法
Modified Shifting Bottleneck Procedure for Job Shop Scheduling
本文讨论了车间调度最小完工时间问题,简洁地证明了以Schrage算法做单机调度的转换瓶颈算法对任何实例都能得到可行解。本文还给出了一个实际的反例,说明以Carlier算法做单机调度的转换瓶颈算法存在得到不可行解的情况。还指出了Carlier算法设计时利用的Carlier定理中的一个错误,并修正和完善了该定理。为了克服转换瓶颈算法在可能得到不可行解方面的不足,以期得到更好的性能,提出了改进的转换瓶颈算法,并证明了该算法对任何实例总能得到可行解。本文还就一组基准实例对改进的转换瓶颈算法做了测试,试验结果显示该改进算法好于原转换瓶颈算法。
In this paper, the job shop scheduling problem with the objective to minimize the makespan is discussed. The theorem, which guarantees the shifting bottleneck procedure (SB) with Schrage one-machine sequencing algorithm always obtains the feasible solution for any instance, is concisely proven. A counterexample is given to show that SB with Carlier’s one-machine sequencing algorithm could get the infeasible solution. By the way, we also point out a mistake made in the Carlier’s theorem which Carlier’s algorithm is based on, and complete it by some modifications. In order to overcome the infeasibility weakness of SB and expect better performance, a modified shifting bottleneck procedure (MSB) for job shop scheduling is proposed. The theorem, which ensures MSB get the feasible solution for any instance of the problem, is testified. MSB is tested on a group of benchmark instances. The computational experiment shows that MSB get better solutions than SB.
黄志
自动化技术、自动化技术设备
作业车间调度,启发式,可行性, 转换瓶颈
Job shop schedulingHeuristicFeasibilityShifting Bottleneck
黄志.一种改进的作业车间调度转换瓶颈算法[EB/OL].(2005-12-12)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200512-261.点此复制
评论