关于麦克斯韦方程协变性的研究
Investigation on Shape Invariance of Maxwell's Equations
通过将麦克斯韦方程与绝热理想气体的一维振动方程进行对照研究,以及对著名的铯原子钟双向飞行实验的理论计算得出:1)麦克斯韦方程与带电粒子在电磁场中所受电磁力公式依其本性都不是协变的,它们只在一个特定的惯性参照系,即"种子参照系"中才能保持其简单形式,电磁波在此参照系中以光速传播;如果将电磁波比喻为从一粒种子开始快速生长的树,则其生长速度正是光速常量。2)"种子参照系"只是一个平凡的惯性系,服从伽利略变换,因而光速没有理由成为速度极限。3)基于"种子参照系"进行分析,迈克尔逊-莫雷实验,Sagnac效应,以及多普勒效应均可得到解释。4)当电磁波与运动界面发生作用后,其速度按斐索流水实验公式计算。5)洛伦兹变换仅仅是一个特别的数学变换,并无物理意义;所谓钟慢效应只是场源相对地心惯性系运动时才有的特殊效应,并不意味着物理时间的相对论变慢;所谓尺缩效应不过是错误的光速不变假设与钟慢效应相结合的数学产物。6)带电粒子在电磁场中所受电磁力公式应当修正,以便在放弃洛伦兹变换时使用。
By comparable research on Maxwell's equations and the one dimensional acoustic wave equation in adiabatic ideal gas and, by theoretical calculation of the famous two directional flying experiment of cesium atomic beam clocks, it is found that: 1) Maxwell's equations and formula of electric-magnetic force on a charged particle are not shape invariat in their nature, and they are only keep the simple shapes in a special inertial reference frame, the "seed frame", with respect to which, the speed of electric-magnetic wave is just the light speed constant; If the electric-magnetic wave is imaged to be a fast growing tree from a seed, the light speed costant is just its growing speed. 2) The "seed frame" is an ordinary inertial frame, which obeys Galilean transformation, so there is no reason for the light speed constant to be the speed limit. 3) Based on the "seed frame", Michelson-Morley experiment, Sagnac effect, and Doppler effect can all be explained. 4) After the electric-magnetic wave meets a moving interface, the speed changes according to the fomula by Fizeau experiment. 5) Lorentz transformation is just a specific math transformation without physical meaning; The time dilation effect is just a special effect when a field seed is moving with respect to the inertial frame at the earth's center, which does not imply relativity slowing of the physical time; The length contraction effect is only a math result of the wrong assumption of constant light speed and the time dilation effect. 6) The formula of electric-magnetic force on a charged particle must be modified if Lorentz transformation is abandoned.
李立新
电工基础理论物理学
麦克斯韦方程伽利略变换洛伦兹变换协变性光速钟慢效应尺缩效应带电粒子所受电磁力公式
Maxwell's equationsGalilean transformationLorentz transformationShape invarianceLight speedTime dilation effectLength contraction effectFormular of electric- magnetic force on a charged particle
李立新.关于麦克斯韦方程协变性的研究[EB/OL].(2012-07-09)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201207-92.点此复制
评论