|国家预印本平台
首页|拉伸扭转不动点定理和非保守变号方程的无穷多周期解的存在性

拉伸扭转不动点定理和非保守变号方程的无穷多周期解的存在性

Bend-twist fixed point theorem and infinity of periodic solutions for non-conservative equations with indefinite weight

中文摘要英文摘要

本文给出并证明了一个拉伸扭转映射的拓扑不动点定理, 应用这个定理,我们得到了一类二阶超线性非保守变号位势方程无穷多周期解的存在性.为了应用拉伸扭转不动点定理, 我们对解在相平面上的定性行为进行分析.我们发现, 当权函数取正号时, 解具有弹性性质且大范数解有强扭转性,同时, 当权函数取负号时, 存在不可延拓解, 从而产生快振荡的解. 这样可证明在一定区域内方程的Poincare映射有定义并且是拉伸扭转映射.

In this paper, we present and prove a new topological fixed point theorem for the bend-twist map. This theorem can be used to obtain the existence of infinite many periodic solutions for a class of superlinear second order non-conservative equations with indefinite weight. Our arguments are based on the analysis of the qualitative behaviour of the solutions of the equations. In the intervals where the weight is positive, the solutions of the equations have the elastic property and the "strong twist" property. In the intervals where the weight is negative, the superlinearity of $g$ implies a blow-up phenomenon. Then we can prove in some region the Pincare map is well defined. Moreover, it ia a bend-twist map.

钱定边、史恩慧、王超

数学

基础数学超线性的非保守方程变号权函数无穷多周期解拉伸扭转不动点定理

Basic mathematics super-linear and non-conservative equations indefinite weight infinite Periodic solutions fixed point theorem of bend-twist map

钱定边,史恩慧,王超.拉伸扭转不动点定理和非保守变号方程的无穷多周期解的存在性[EB/OL].(2011-01-10)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201101-389.点此复制

评论