基于结合算法的血压预测模型的探究与实现
Research and Implementation of Blood Pressure Estimation Model Based On Combination Algorithm
数据挖掘作为从单一数据中抽取出有效信息的手段,可以辅助我们分析已有的医疗数据,给出科学的诊断决策。近年来,在血压预测的研究方面,最常见的方法是使用脉冲传输时间。脉冲传输时间被证实与血压有着紧密联系,但由于个体的生理差异,脉冲传输时间会受一定影响,因此需要对每个个体的血压预测结果进行修正。Mohamad Kachuee等人提出了改进方案,使用ECG图和PPG图中的多个特征建立回归模型,减小脉冲传输时间带来的误差。本文基于结合的思想,将线性回归模型、分类回归树模型(CART)和SVM回归模型两两结合,建立三个血压预测模型。每个血压预测模型通过调整内部回归模型的权值,将平均预测误差降至最小。最后通过实验,计算出每种血压预测模型的平均绝对误差、标准偏差、运行时长,从准确度、稳定性和效率三方面,比较得出表现最好的是CART回归与SVM回归模型相结合的血压预测模型。
ata mining, as a means of extracting useful information from data, can help us analysis existed medical data and provide scientific decision-making for diagnosis.Recently, in the research of blood pressure estimation, one of the most prominent methods is to use the Pulse Transit Time(PTT).It is proven that PTT has a strong correlation with the blood pressure, however, this method ignores that PTT is highly dependent to each individual's physiological properties, thus estimation results need to be revised for each individual. An improved method which has been proposed by Mohamad Kachuee utilizes multiple features of ECG and PPG diagrams to establish a regression model to reduce the error of Pulse Transit Time.This paper implements three BP estimation models combining linear regression, CART regression and SVM regression based on combination algorithm.Each model minimizes the mean prediction error by adjusting the weight of the internal regression models. Finally, we calculate the mean absolute error, standard deviation and running time, it is concluded that the BP estimation model combing CART and SVM regression model performs best from the three aspects of accuray, stability and efficiency.
赵翔、徐国爱、林昭文
医学研究方法计算技术、计算机技术
人工智能血压预测模型线性回归RTSVM
rtificial IntelligenceBlood Pressure Estimation ModelLinear RegressionCARTSVM
赵翔,徐国爱,林昭文.基于结合算法的血压预测模型的探究与实现[EB/OL].(2017-01-03)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201701-11.点此复制
评论