The characterizations of monotone functions which generate associative functions
The characterizations of monotone functions which generate associative functions
Associativity of a two-place function $T: [0,1]^2\rightarrow [0,1]$ defined by $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,\infty]^2\rightarrow[0,\infty]$ is an associative function, $f: [0,1]\rightarrow [0,\infty]$ is a monotone function which satisfies either $f(x)=f(x^{+})$ when $f(x^{+})\in \mbox{Ran}(f)$ or $f(x)\neq f(y)$ for any $y\neq x$ when $f(x^{+})\notin \mbox{Ran}(f)$ for all $x\in[0,1]$ and $f^{(-1)}:[0,\infty]\rightarrow[0,1]$ is a pseudo-inverse of $f$ depends only on properties of the range of $f$. The necessary and sufficient conditions for the $T$ to be associative are presented by applying the properties of the monotone function $f$.
Chen Meng、Yun-Mao Zhang、Xue-ping Wang
数学
Chen Meng,Yun-Mao Zhang,Xue-ping Wang.The characterizations of monotone functions which generate associative functions[EB/OL].(2025-06-19)[2025-06-29].https://arxiv.org/abs/2409.02941.点此复制
评论