|国家预印本平台
首页|基于神经网络词转向量的新质生产力关注热点比较研究

基于神经网络词转向量的新质生产力关注热点比较研究

omparative Study on Focus of Attention of New Quality Productivity Based on Neural Network Word2vec

中文摘要英文摘要

新质生产力是对马克思主义生产力理论的新时代诠释,是科技创新驱动形成的先进生产力,是数据要素发挥乘数效应的生产力。新质生产力在学术界和实践界都受到广泛的关注。本文对我国学术平台中国知网和社会化媒体平台微博和知乎的新质生产力关注热点进行比较分析,旨在推动我国新质生产力研究取得更多成果。首先,从中国知网搜集与新质生产力有关的文献摘要,从微博和知乎搜集与新质生产力有关的回答和博文,分别形成学术平台的语料和社会化媒体的语料,再运用新兴的神经网络词转向量算法对这两个语料库进行 Word2vec 建模,以便同时在语法层面和语义层面对词语的相似度进行有效的测度。在此基础上,利用t-SNE降维技术将这些高维词向量降至2维,通过可视化显示,比较和分析了"新质生产力"等重要词语在语义空间中的位置关系。研究结果表明我国学术平台和社会化媒体平台在新质生产力关注热点方面存在差异。本文创新性地利用词转向量对我国学术平台和社会化媒体平台的新质生产力关注热点进行了比较分析,为新质生产力研究提供了新的视角。

New qualitative productivity is a contemporary interpretation of Marxist theory on productivity, representing advanced productivity driven by technological innovation and the multiplier effect of data elements. It has attracted widespread attention in both academic and practical circles. This paper compares and analyzes the focus on new qualitative productivity between China\'s academic platform (CNKI) and social media platforms such as Weibo and Zhihu, aiming to promote further achievements in research on new qualitative productivity in China. Firstly, abstracts related to new qualitative productivity were collected from CNKI, while responses and blog posts related to it were gathered from Weibo and Zhihu, forming corpora for the academic and social media platforms respectively. Then, the emerging neural network-based Word2vec algorithm was applied to these two corpora for modeling, enabling effective measurement of word similarity at both syntactic and semantic levels. On this basis, t-SNE dimensionality reduction technique was used to reduce these high-dimensional word vectors to two dimensions for visualization, comparing and analyzing the positional relationships of important words like "new qualitative productivity" in the semantic space. The research results indicate differences in the focus on new qualitative productivity between China\'s academic and social media platforms. This paper innovatively employs word vectors to compare and analyze the focus on new qualitative productivity between China\'s academic and social media platforms, providing a new perspective for research on new qualitative productivity.

李梦文

科学、科学研究信息传播、知识传播计算技术、计算机技术

新质生产力Word2vec 建模学术平台社会化媒体平台比较研究

New qualitative productivityWord2vec modelingAcademic platformSocial media platformComparative study

李梦文.基于神经网络词转向量的新质生产力关注热点比较研究[EB/OL].(2024-08-29)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202408-47.点此复制

评论