|国家预印本平台
首页|糖尿病发病时间趋势及其与中国内脏脂肪指数的关系:前瞻性队列研究

糖尿病发病时间趋势及其与中国内脏脂肪指数的关系:前瞻性队列研究

rend of Onset Time of Diabetes Mellitus and Its Correlation with Chinese Visceral Adiposity Index:a Prospective Cohort

中文摘要英文摘要

背景 糖尿病仍是全球重大公共卫生问题,横断面研究发现内脏脂肪与糖尿病患病密切相关,但糖尿病发病时间趋势及与内脏脂肪关系(CVAI)的前瞻性队列研究较少。目的 通过前瞻性队列研究分析浦东新区居民糖尿病发病时间趋势及其与中国内脏脂肪指数的关系,为其科学防治提供依据。方法 本研究为前瞻性队列研究。选取2013 年参与浦东新区慢性病危险因素监测项目的 12 个乡镇街道、35 个村居委的居民 5 236 人为研究队列。收集其基线资料,内容包括 CVAI、内脏脂肪指数(VAI)、BMI、腰围(WC)、腰臀比(WHR)、腰高比(WHtR)、身体形态指数(ABSI)和身体肥胖指数(BAI),分别于 2016 年和 2019 年进行追踪随访;截至随访结束(2019年10月),通过问卷调查、实验室检查、医疗系统就诊信息和生命统计信息系统判断该研究队列糖尿病新发情况。依据基线CVAI、VAI、BMI、WC、WHR、WHtR、ABSI、BAI 四分位数将纳入人群分别分为第 Q1~Q4 四分位数:CVAI 各组例数依次为 1 306、1 307、1 307、1 307 例;VAI 各组例数依次为 1 300、1316、1 306、1 306 例;BMI 各组例数依次为1 305、1 302、1 312、1 311 例;WC 各组例数依次为 1 302、1 273、1 287、1 367 例;WHR 各组例数依次为 1 180、1 203、1 332、1 514 例;WHtR 各组例数依次为 1 199、1 393、1 400、1 237 例;ABSI 各组例数依次为 1316、1 302、1 302、1 308 例;BAI 各组例数依次为 1 310、1 304、1 308、1 307 例。采用多因素 Cox 回归分析 CVAI 和其他肥胖指标与糖尿病发病的关系;采用受试者工作特征曲线(ROC曲线)比较 CVAI 与其他肥胖指标的预测作用。结果 浦东新区居民 2013—2016 年糖尿病发病密度33.55/1 000人年,2016—2019 年糖尿病发病密度 23.25/1 000 人年,随着年龄的增长,糖尿病总发病密度呈现出升高趋势(2013—2016 年:χ2 =28.503,P 趋势 <0.001;2016—2019 年:χ2 =25.600,P 趋势 <0.001)。截止 2016 年,基线 CVAI 四分位数越高,糖尿病累积发病率(CVAI:χ2 =131.865,P 趋势 <0.001)和发病密度(CVAI:χ2 =100.105,P 趋势 <0.001)均越高。调整相关混杂因素后的多因素 Cox 回归分析结果显示,与 CVAI处于 Q1 相比,CVAI 处于 Q4 的男性糖尿病的发病风险增加 79.4%(HR=1.794,95%CI=1.044~3.083,P<0.05),女性糖尿病的发病风险增加 371.2%(HR=4.712,95%CI=2.601~8.538,P<0.05)。ROC 曲线结果显示,在预测男性糖尿病发病情况中,CVAI 对男性糖尿病预测的AUC为0.600(95%CI=0.561~0.640)),识别男性糖尿病的约登指数为 0.181,截断值为104.118;Delong检验结果显示,CVAI对女性糖尿病预测的准确性最高(AUC=0.699),且在识别女性糖尿病时有最大的约登指数值 0.317,最佳截断值为104.609。结论 2013—2019年浦东新区居民糖尿病发病密度随年龄的增长呈升高趋势;且相较于其他肥胖指标,CVAI 可作为预测糖尿病发病风险的指标。

BackgroundDiabetes mellitus is a global public health issue. Cross sectional studies have found that visceral fat is closely related to the prevalence of diabetes melliteswhile prospective cohort studies on the trend of onset time of diabetes mellitus and its correlation with Chinese visceral adiposity indexCVAIare scant. ObjectiveTo analyze the trend of onset time of diabetes mellitus and its correlation with CVAI in Pudong New Area residents by the prospective cohort study thus providing evidence for the scientific prevention and treatment of diabetes mellitus. MethodsThis was a prospective cohort study involving 5 236 residents from 12 townships and 35 village committees who participated in the chronic disease risk factor monitoring project in Pudong New Area in 2013. Baseline data were collectedincluding CVAIvisceral adiposity indexVAI body mass indexBMIwaist circumferenceWCwaist-to-hip ratioWHRwaist-to-height ratioWHtR body shape indexABSIand body adiposity indexBAI. Follow-up was conducted in 2016 and 2019. By the end of follow-up in October 2019the incidence of new onset of diabetes mellitus in this cohort was calculated through questionnaire surveylaboratory testingmedical system visit information and vital statistics information system. According to the baseline quartilethe CVAIVAIBMIWCWHRWHtRABSIand BAI of the included population were divided into Q1 to Q4 quartiles. The number of cases in CVAI Q1-Q4 groups was 1 3061 3071 307and 1 307respectively. The number of cases in VAI Q1-Q4 groups was 1 30013161 306and 1 306respectively. The number of cases in BMI Q1-Q4 groups was 1 3051 3021 312and 1 311respectively. The number of cases in WC Q1-Q4 groups was 1 3021 2731 287 and 1 367respectively. The number of cases in WHR Q1-Q4 groups was 1 1801 2031 332and 1 514respectively. The number of cases in WHtR Q1-Q4 groups was 1 1991 3931 400and 1 237respectively. The number of cases in ABSI Q1- Q4 groups was 13161 3021 302and 1 308 respectively. The number of cases in BAI Q1-Q4 groups was 1 3101 304 1 308and 1 307respectively. The multivariable COX regression was used to analyze the correlation of CVAI and other obesity indicators with the onset of diabetes mellitus. The predictive potential of CVAI and other obesity indicators in diabetes mellitus was assessed using Receiver Operator CharacteristicROCcurves. ResultsThe incidence density of diabetes mellitus in Pudong New Area was 33.55/1 000 person-years from 2013 to 2016and 23.25/1 000 person-years from 2016 to 2019. With agingthe total incidence density of diabetes mellitus showed an increasing trend2013-20162 =28.503Ptrend value < 0.0012016- 20192 =25.600Ptrend value < 0.001. By 2016the baseline CVAI quartile was positively correlated with the cumulative incidence of diabetes mellitusCVAI2 =131.865Ptrend value <0.001and the incidence densityCVAI2 =100.105 Ptrend value < 0.001. Cox regression analysis after adjusting for relevant confounders showed that compared with CVAI in Q1 the risk of diabetes mellitus in men with CVAI in Q4 increased by 79.4%HR=1.79495%CI=1.044-3.083P<0.05. Women had a 371.2% increased risk of diabetes mellitusHR=4.71295%CI=2.601-8.538P<0.05. ROC curve results showed that in predicting the incidence of male diabetesthe area under the ROC curveAUCof CVAI for male diabetes was 0.600 95%CI=0.561-0.640with the Youden index of 0.181and the cutoff value of 104.118. DeLong test showed that CVAI had the highest accuracy in predicting female diabetes mellitusAUC=0.699with the Youden index of 0.317and the optimal cutoff value of 104.609. ConclusionFrom 2013 to 2019the incidence density of diabetes mellitus increased with the increased age in Pudong New Area. Compared with other obesity indicatorsCVAI can be used as an indicator to predict the risk of diabetes mellitus.

刘庆平、宋家慧、李智韬、高娇娇、柯居中、王小楠、邱桦、周弋、阮晓楠、吴抗

10.12114/j.issn.1007-9572.2024.0177

医药卫生理论预防医学基础医学

糖尿病中国内脏脂肪指数浦东新区前瞻性队列研究影响因素分析

刘庆平,宋家慧,李智韬,高娇娇,柯居中,王小楠,邱桦,周弋,阮晓楠,吴抗.糖尿病发病时间趋势及其与中国内脏脂肪指数的关系:前瞻性队列研究[EB/OL].(2024-09-09)[2025-08-02].https://chinaxiv.org/abs/202409.00103.点此复制

评论